P\
/A \
y &
A

! B

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

9

// \\\
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

Waves in the Lee of a Mountain with Elliptical Contours
G. D. Crapper

Phil. Trans. R. Soc. Lond. A 1962 254, 601-623
doi: 10.1098/rsta.1962.0007

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1962 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;254/1048/601&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/254/1048/601.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 601 ]

WAVES IN THE LEE OF A MOUNTAIN WITH
ELLIPTICAL CONTOURS

By G. D. CRAPPER
Department of Mathematics, University of Leeds

(Communicated by M. J. Lighthill, F.R.S.—Received 28 September 1961)
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This paper considers the flow over a mountain which has elliptical contours, for two types of
undisturbed air stream. In the first case the static stability parameter {2 =gf/V?is assumed to be
constant throughout the atmosphere, and in the second /% is assumed to fall off exponentially
with height, in each case with (V”/V) = ¢? also being constant. On the basis of the wave equation
derived in an earlier paper, a simpler method is developed to find approximations to the difficult
Fourier integrals which arise.

The results show that when /2 is constant the form of the waves is determined by the value of g¢.
When ¢ = 0 the waves lie in a strip in the lee of the highest part of the mountain, but when ¢ is
large enough the waves are contained in a wedge, and resemble ship waves. When {2 falls off
exponentially the waves closely resemble ship waves for any value of g.

The variation of the amplitude of the waves as various parameters are changed is discussed in
detail.
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1. INTRODUCTION
This paper extends the work of a previous paper, Crapper (19594), which will be referred
to as I. The previous paper considers the flow over a mountain with circular contours when
the static stability parameter /2 = gf/V? (see §2 for symbols) is constant throughout the

Y B \

— whole depth of the atmosphere. The present paper extends this in three ways: the mountain
P P P pap y

§ > is allowed to have elliptical contours; the parameter (V”/V) = ¢? is allowed to have a non-
O E zero value, although ¢ must be constant; and a more realistic form is used for the /2 para-
e meter, [2 decreasing exponentially with height. Further discussion of the case of constant /2
- s g exp y g

T 8 is also included. The exponential form of /2 was first used by Palm & Foldvik (1960), in an
= w important paper on two-dimensional waves in the lee of an infinite ridge. They showed that

the flow produced when complicated functions, based on actual measured results, are used
for /2 is almost identical at low levels with the flow produced when /2 is exponential, pro-
vided that the rate of fall-off and the initial value of /2 are chosen suitably. This simple form
of {2 is therefore ideal for an attempt at a three-dimensional solution.

Most of the more important papers on the topic of lee waves which were published before
1959 were discussed in I (§1) and require no further space here. However, there are two
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602 G. D. CRAPPER

such papers of which the author was unaware at the time of publication of I, by Wurtele
(1957) and Palm (1958). Wurtele considers the three-dimensional problem of the flow in
the lee of a disturbance which is exactly the ‘line of doublets’ of I (i.e. a disturbance lying
along a finite length of a horizontal line perpendicular to the undisturbed air stream),
when /2 is constant. The results of Wurtele’s paper and of I agree, but I also shows that the
amplitude of the lee waves is much smaller, and the shape of the wave crests different, when
a form of disturbance more representative of a mountain is used.

Palm (1958) deals with both two- and three-dimensional waves in an air stream divided
into layers, in each of which /? is constant, with /2 decreasing as height increases. This is the
form of air stream introduced by Scorer (1949). Palm’s three-dimensional problem is
exactly that of Scorer & Wilkinson (1956), referred to in I, and the results are similar; in
each case numerical methods are used.

A recent paper by Sawyer (1960) gives a numerical solution of the two-dimensional
problem which is particularly interesting because the use of an electronic computer enables
Sawyer to take various forms for the /2 parameter which are not confined to well-behaved
mathematical functions, and which can therefore be derived from actual potential tempera-
ture and velocity profiles of air streams which are known to have given lee waves. The
results of earlier theoretical papers are checked by the numerical method, and there is
good agreement.

All the theories referred to in I, together with those of Wurtele (1957), Palm (1958) and
Sawyer (1960), and I itself, are linear theories, so that their results apply only to the flow
over a mountain whose height is small compared with its width. Several recent papers
which discuss the two-dimensional problem have presented non-linear theories (Long
1953, 1955; Scorer & Klieforth 1959; Palm & Foldvik 1960; Yih 19604, b, ¢), partly with
the object of finding conditions under which rotors are formed. Rotors are regions of flow in
which the streamlines are closed circuits, and they are found under the crests of lee waves
of large amplitude. In three dimensions, however, the linear theory is hardly complete,
and non-linear theories have not been attempted.

The present paper is still restricted to a linear theory, and starts from the wave equation
derived in I by a double Fourier-transform technique. This equation is solved in §2 for
each of the cases of constant /2 and of exponential /2, and §2 also contains some further
discussion of the problem of the second boundary condition, which is still the subject of
controversy. Theinverse Fourier transforms, which give the final solution for the streamlines,
are dealt with in §3 for constant /2 and in §4 for exponential /2. The method used for these
integrals has been developed from the method of Lighthill (1960). Approximations are
made for large values of x, the distance downstream of the mountain, and in most cases the
method of steepest descents is used for the second integration.

The results of §3 show that when /2 is constant the form of the waves depends on the
value of (V"/V)=¢? (= constant). When ¢ = 0 the results of I, which was restricted to
this case, are confirmed. Perhaps the most surprising of these is that the amplitude of waves
in the central plane downstream of the peak of a narrow mountain is greater than the ampli-
tude of the two-dimensional waves in the lee of an infinite ridge of the same cross-section. The
amplitude decays downstream as x~# for both the two- and three-dimensional cases, but
increases linearly with height. The waves are contained in a strip in the lee of the highest
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WAVES IN THE LEE OF A MOUNTAIN 603

part of the mountain. For g = 0 the solution is not given in detail, but if ¢ is sufficiently large
the waves appear to be contained in a wedge, after the manner of ship waves, and for a
narrow mountain the decay of wave amplitude downstream is more rapid, as x~%.

When /2 is exponential (§4) the value of ¢ has no such significant effect; the waves in the
lee of the elliptical mountain are contained in a wedge, whatever the value of g. The waves
have maximum amplitude at a finite height, above which the amplitude falls off rapidly.
The rate of decay downstream varies from x~* for a mountain of small width perpendicular
to the air stream, to no decay at all for an infinite ridge. The amplitude increases as the
width of the mountain perpendicular to the air stream increases. Mathematically, the
difference between the solutions of §§3 and 4 is that the waves of §3 come from branch
points of the integrand, while those of §4 come from poles.

These results confirm that a sufficiently rapid decrease of /2 with height leads to large-
amplitude lee waves at low levels. When /2 is constant the amplitude is small at low levels
but may well be important higher up.

2. SOLUTIONS OF THE WAVE EQUATION

The wave equation is

(1)

where w, is defined by
wing2) = [ [ exp i Er-rn)bug(z £ 1) didy, 2)

w(x,y,z) being the small vertical velocity in the disturbed region. Equation (1) was derived
from the linearized steady flow equations, neglecting the effects of viscosity, in the previous
paper, 1. The notation is as follows: x, y are horizontal co-ordinates along and perpendicular
to the direction of the undisturbed air stream V(z), and z is the co-ordinate vertically up-
wards, with the ground atz = 0; k = ,/(§2+49?); (> = gf/V?(z), where § = f(z) isa parameter
depending on the static stability of the atmosphere and g is the acceleration due to gravity;
¢ = ¢(z) is the speed of sound; primes denote differentiation with respect to z. If we write

H
0 ﬂ(O) 0 ( )
where p(z) is the density of the air, and use the fact that

’

Egz"f‘ﬂ“*‘% = 0, <4}
(1) becomes )
, kzlz V/l lpl ] ”
(wg)" -+ wf {—gz R i /;} =0 (5)

The last two terms of the bracket are small compared with /2, and we will neglect them.
If { is the vertical displacement of a streamline from its undisturbed position,

(= [y =y [ wds (6)

and therefore V(z) (p(z)/p(0))* ¢, is also a solution of (5), {, being the Fourier transform
of ¢, defined in the same way as w, (2). Thus we can derive the streamline displacement
732
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604 G. D. CRAPPER

directly. We shall leave out the non-dimensional factor (p(z)/p(0))* until the final result.
This factor is in any case nearly unity, and some authors in this field have omitted it
altogether.

At this stage we must specify /2 and V”/V as functions of z in such a way that (5) can be
solved in a reasonably simple form, so that the inverse transformation which gives { will not
be too complicated. The cases we shall consider here are (a)

[2 = constant, (V"/V) = ¢ = constant (7)
throughout the atmosphere, and ()
[2=12e2h  (V"[V) = ¢* = constant (8)

throughout the atmosphere. Here L, / and ¢ are all real positive constants, and ¢ may be
zero. If ¢ = 0, the velocity profile in (7) or (8) is of the form

V=U+U?z, (9)
U and U’ being constants. If ¢ == 0 the velocity profile is
V: Ul C+qz+ U2C_qz, (10)

where U, and U, are constants.

The waves in the lee of a mountain with circular contours were found for case (a) with
g =01n I, and in §3 of this paper that solution is extended (by a simplified method) to
find the waves in the lee of the mountain given by

g(x:y:()) :Hexp{*g*'%} (11)

This mountain has maximum height H, and a is its half-width in the plane y = 0 at height
He™1, while 4 is its half-width in the plane x = 0 at the same height; its contours are ellipses
with their principal axes in the planes ¥ = 0 and y = 0.

The waves given by case (4) have some remarkable properties, as we shall see below,
although it is not a particularly realistic case, since /2 will never be strictly constant in the
atmosphere. Case (5) was introduced by Palm & Foldvik (1960), for reasons described in
§1. As their problem is two-dimensional, Palm & Foldvik use an exponential form for

VI/
L (12)

i.e. the present /2—¢?, and therefore they do not have to define ¢% separately. However, the
form of V'in (10) with U, = 0 and ¢ small is similar to the velocity profile which they use in
finding their original values of (12), and we can therefore expect case (4) to give lee waves
of large amplitude at low levels, in the same way as the two-dimensional solution.

Equation (5) (neglecting the last two terms of the bracket) can be solved directly for
case (a), and by a suitable transformation for case (4).

Case (a) gives :
Vi, = A,e ¥+ B, ef? (13)
where 4,, B, are constants and

K = {k2+q®— K22 [E20. (14)


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

WAVES IN THE LEE OF A MOUNTAIN 605
We take the particular solution with B, = 0, since then {,—> 0 as z—>c0 when K is real,
Vi = A,e %z, (15)

The mountain shape (11) is the streamline at z = 0, so that

4, = (0) 40,6 7) = TN exp (g2 o), (16

and we have

(=g | expliEerm) —2 (&) (42 + g~ hag— 0] dkl,
(17)

The form which (15) takes when K is imaginary depends on the ‘upper’ boundary
condition, and will be derived as in I. There the conditions of time dependence, eventually
reaching the steady state as time — 00, or of small Rayleigh friction terms, lead simply to
the condition that the contour of the {-integration must pass ‘below’ the singularities on
the real axis of the {-plane, in order to give no waves upstream of the mountain.

If we take, for the moment, ¢ = 0 in (17) there are singularities at £ = 4/, and others
may appear if the p-integration is carried out first, as in I. Our boundary condition

implies that JE@—0) = —i (22— (0<E< [),}
= +1,/(12—£8) (—I<E<0).

The result (18) is the same as that of many previous authors writing on lee waves, including
similar problems on water waves: Hoiland (1951), Stoker (1953) and Wurtele (1955)
work out the time-dependent solution in detail for surface waves, and Palm (1953), Wurtele
(1953) do the same for mountain waves; Eliassen & Palm (1954) arrive at the same result
by applying a radiation condition; and Corby & Sawyer (19584) assume that the atmo-
sphere has a rigid upper boundary, eventually letting the height of this boundary become
infinite. The fact that these various methods all give the same result gives weight to the choice
of this condition.

However, Scorer, in his numerous papers, does not use the boundary condition put
forward here. Instead he says (Scorer 19584): ‘In the absence of a special second condition
waves corresponding to no disturbance at the ground should be excluded for the same
reason that lee waves on the upstream side of the mountain are excluded’. Scorer does not
accept the methods used by the above authors as suitable ‘special’ second conditions,
because the flow is unlikely to start from rest in nature, or to have a condition like a rigid
lid, etc., and accordingly he writes (13) in the form

V{y = Cicos K*z+D;sinK*z (K* = +iK), (19)

(18)

and takes the solution with D; = 0, since sin K*z is zero at the ground. There is, of course,
no disagreement when K is real, the form (15) being the only possible choice. Putting
D, = 0in (19) gives a sort of Cauchy principal value for the integral (although the singulari-
ties are branch points, not poles) and, as shown by Corby & Sawyer (19585), this leads to
waves both upstream and downstream, with equal amplitude. In a reply to Corby &
Sawyer, Scorer (19584) argues that trains of waves can be added or subtracted at will in
order to cancel the upstream waves, and mathematically the solution will still be correct.
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606 G. D. CRAPPER

However, it seems to this author that adding on waves is simply equivalent to changing the
boundary condition to the one used here, and that it is impossible to exclude simultaneously
both upstream waves and terms which are zero at the ground.

The integral (17) will be evaluated in §3, with the condition described above, that the
contour of the {-integral passes below the singularities.

The wave equation in case (4), with 2 given by (8) is, from (5),

(V)" — (Vo) {kf — kL2721 [E% — 0, (20)
where k3 = k2 g% = 2492+ g2 (21)
To solve this we write
® = khLe 2"|E]|, (22)
and take @ as independent variable. Equation (20) then becomes
d?
D d q)z (Vgo) + (D (VCO) =+ ( hzk%) (Vgo) =0, (23)

which is Bessel’s equation, with solutions J,; (®), ¥, (®). Since k£, is real and positive, and
the solution is to be finite as z - oo (® > 0) we must write

VG = Ay, (hEL e/ |E]). (24)

We use the mountain shape (11) to determine the constant 4,, and so for case (4) we have

LHAO) [« (= e ) AT (L)
e T GELTIED ddy.

This integral is con51dered in §4, again with the condition that the path of the {-integral
passes below the singularities.

(25)

3. THE STREAMLINE DISPLACEMENT WHEN [% IS CONSTANT

This section is concerned with the double Fourier integral (17). In (17) we shall introduce
non-dimensional variables with /~! as unit of length and V(0) as unit of velocity. Retaining
the same symbols for the non-dimensional forms of the various quantities, we simply replace
both [ and V(0) by unity.

At this stage we break away completely from the method of I by considering the §-integral
first, and we approximate at once for large x (x > 1). The main contribution to the integral
then comes from the part of the contour near to the singularities of the integrand. In (17)
we have branch points where

{(€2—1) A+9*/E%) +¢%} = 0. (26)
We can write (26) as
E2(82—£6F) (+E3) = 0, (27)
giving branch points at §{ = 4§, §{ = 4-i§;, with
&= 41—+ {(1 -2+, (28)
and &= —41—g@—n*—{(1 -~ +47%]. (29)

When ¢ = 0, §, = 1 (in the dimensional form £, = /) and §, = 7. There is another branch
point at theorigin. This arises from the change of'sign of 1,/(§§—£?) at the origin, as shown
n (18) (where &, =1).
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WAVES IN THE LEE OF A MOUNTAIN 607

To work out the details, we deform the contour in the §{--plane as shown in figure 1,
so that it passes into the upper half-plane for x > 0 and into the lower half-plane for x < 0.
The parts of the deformed contour which are parallel to the real axis are taken far enough
away from the axis to ensure that the integrals along them give a negligible contribution
to the total; the circular arcs at infinity also give no contribution. As was found in similar
cases in I, the part of the path along the imaginary axis will give a non-wave term, ¢, which
will appear whether x > 0 or x < 0. This will include the effect of the branch points at
§ = +1i§,. The non-wave part of the disturbance will not be discussed here ; we shall consider
simply the wave term, {;,, given by the loop integrals around £ = +§;, and £ = —£, which
only appears for x > 0 (downstream). To the same order of approximation the paths of
these loop-integrals can be considered as coming from infinity along the broken lines in
figure 1.

)

g3 +‘§> B /oo‘ B

Ficure 1. Contours of integration in the £-plane.

Taking first the right-hand loop we substitute
€= &+iy?, (30)
so that, since x is assumed large, we shall be concerned only with small ¢. The £-integral
in (17) becomes, on neglecting terms O(y¥3) and omitting all factors not depending on £,

[ exp (g —14) {exp [ —2((1-+£1/65) 209} otr] —exp [ —2((1-+ 63) 2603} e b7

x exp (—¢a§—Ha%, Y% 2y dy. (1)
This comes from the straight parts of the loops only. Certain terms in the powers of the
exponentials in the large bracket which have third or higher powers of  and which also
contain a factor involving # have been neglected. This would appear to be unjustifiable
because 7 can become large. However, when 7 is large the integrand as a whole is small
on account of the e~#°7* factor (not shown in (31)) and therefore the approximation will
be adequate. The approximation is adequate only if z < x¥, since otherwise the terms in
zy3 may be comparable with x2. The expression (31) can be written

2 exp iy v 10+ gy T [ expl[ (-t ity [y + 2T LR Yy,

280(x -+ 3ia%8,) (280) ¥ (x+Ha%,)
(32)
) Lops , 122(83 4} .\ z{2n (848D
= explitor 10 g il i) e D (33
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608 G. D. CRAPPER

The left-hand loop integral is given similarly by substituting §{ = —£,+iy? and is equal to
the complex conjugate of (33). From the two contributions we have

Habzertr (= D) 6

~ dp. (34
b Tt mV(z)at) —w 2&0x & 7 (34)
Here we have assumed x > $a%, to enable the factors (x+$ia%§;) in (33) to be replaced
by x. This is hardly a further restriction than x > 1 which is already assumed, unless « is too

large; if a is large we expect from previous results that the waves will have very small
amplitude.

exp |-y — Ja%8R-+iny — 1097

We have now to evaluate the y-integral in (34). We shall first consider the case ¢ = 0,
and bring in non-zero ¢ later. The case ¢ = 0 has the advantage that we can work out the
integral exactly in the special case of y = 0, giving the waves in the plane downstream of the
peak of the mountain. With ¢ = 0 and y = 0 the integral is

" emapia, (35)
where B = 1b2Fiz?|2x (36)
and |arg B | < 3m. We have here used the fact that for ¢ = 0,£, =1 and £, = 7. Substituting
n = sinh 7, (35) becomes
dy = .
(1 “aﬁ) f " emminkerdr, (37)
d IBK (1B
— (1= 4p) " K,(4B) (38)

by Watson (1944, §6-22(7)), first writing sinh?7 in terms of cosh 27. Here K is the Bessel
function of imaginary argument.
Thus in the plane y = 0

Habz
S N% 22V (2) pt(2)

—exp {iv—fa? izl 4 F Fim 47
X {Ko(R02Fi22)4x) + Ky (1B2F i22/4x)}, (39)
[exp fix-+iz2/dx— fim} (Ko (162 —i22/4a) + K, (§0* —iz2/4x)}],
(40)

 Habzexp (—4ta?-+§b?)
22V (z2) pt(z) a¥

when x > 1a%,, z < &%, and ¢ = 0. Here p(z) is the non-dimensional density, taking p(0)
as unit; this factor was omitted after equation (6).

For the purpose of comparing this result with the results of I it is advantageous to con-
sider separately the special cases of xb? > 222 and xb? < 2z? for which (40) reduces to

Habz exp (—1a%+$b?)

Sw ~ =051 Viz) p2) b (% —&m) {Ko(3%) + K, (50%)}, (41)
and §W~2§ﬂ$(b;;t) @ Lexp fix-+iztfdx — Jim) (Ko —i22/4x) + Ky —iz?fa)}],  (42)

respectively. The form (41) gives the waves in the plane y = 0 at low levels for a mountain
of small width perpendicular to the air stream (i.e. small 4), but applies to larger heights for
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WAVES IN THE LEE OF A MOUNTAIN | 609

wider mountains. The second form, (41), applies only to mountains with very small b,
because our approximations are not valid if z is too large.
The restrictions on (41) are much the same as those on I(137), which in the plane y = 0

gave 2¢Haz

Cw ~ 3008 (x+¢m) {K, () +aKo(a)}+ 0 (x7F) (1137)

i V(2) p(2) 4t
for a circular mountain. Putting b = a in (41) makes it very similar to (I 137), but we must
allow for the fact that the mountains are not exactly the same shape.

However, with (41) we can see the variation of the amplitude of the waves as we increase
b keeping a constant, so that the elliptical mountain eventually becomes an infinite ridge.
This variation is shown in curve 1 of figure 2. It is clear that for values of b above about 5,
say, the waves in the plane y = 0 for the elliptical mountain are almost identical with the
waves in the lee of a ridge (4 = o0) which has the same height, H, and width in the x-direc-
tion, a. Moreover, for a mountain with 4 smaller than 5 (but still large enough for (41) to be
suitable), the wave amplitude in the plane y = 0 is greater than the amplitude of waves in
the lee of the ridge. This rather surprising result confirms what was found in I.

[\
T

[y

amplitude (arbitrary scale)

b

Ficure 2. The amplitude of the waves in the plane y = 0 asa function of 4, the parameter governing
the width of the mountain perpendicular to the undisturbed air stream, when /2 is constant.
Curve 1is for ¢ = 0, x6% > 2z%; curve 2 is for ¢ = 1/y/2, a = /2, x = 5, z = /10, and is accurate
for b greater than about 5. The broken line showing amplitude independent of 4 is given by the
approximation for b > 5, xb* > 2z° when ¢ = 0. (a, b, x, z, ¢ non-dimensional.)

When xb2 < 222, so that b is very small, and {, takes the form (42), the wave disturbance
is like that given by the ‘doublet’ solution in I in fact, if we take a doublet strength
m = nHabe %", (42) is identical with I (90) with y = 0. A very narrow mountain therefore
gives behaviour like that given by doublet, a result in disagreement with the results of I.
Finding this disagreement made necessary a re-examination of the earlier theory, which
was found to be incorrect. The second (and dominant) singularity of the doublet case
in I has in fact been found to exist in the circular mountain case, the error in proving that

it did not arising through confusion of the directions of the cuts in the Riemann sheets of the
Vor. 254. A
74 54 .
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610 G. D. CRAPPER

¢-plane. However, for a circular mountain this singularity is no longer on the real axis
(its distance from the axis depending on the mountain parameter a, which is zero for the
doublet), and the waves to which it gives rise have an exponential decay with x. Because
of this decay the waves can be shown to be negligible in all interesting cases, and the con-
clusions of I are unchanged. The corrected form of this section of I appears in Crapper

(19590).

In order to obtain a solution which is valid for all y we will now apply the method of
steepest descents (described in Watson 1944, §8:3) to the integral in (34). We shall
retain the restriction ¢ = 0. If some combination of y, 162 and z%/2x is large, the integral in
(34) is dominated by the function

eft) = exp (iﬂy——%bZﬂZ:};iZZﬂZ/Qx), (43)

the other terms in the exponential being constants when ¢ = 0 . The integrand of (34) hasa

col where f'() = 0, 1.e. at
TF dxyz® -120%%

ST e 4t

(44)

and if the contour is suitably deformed to pass through 7,, the main contribution to the
integral is from the part of the path near to this point. The required direction in which the
path must pass over the col can be shown to make an angle + ¢ with the real axis, where

0 = Ltan~! (222/6%) (0 < 0 < %) (45)

(the signs corresponding with those of (43)), and the leading term of the approximation
gives

¢ 2t Haz I:b4x2{(b4x2 +42%)2 -+ 8x%y?(— b+ 42 + 2902?2)}]%
b2x2y2 22 2xy2z2
<oxp | o'~ g g eos [ S e =) ()
166%x3y?22
— Lltan-1
where ¢ = 3tan {(b4x2 42924 dx2y2 (425 — b4x2)’ (47)

In (46) we have carried out the summation over the 4 signs from the two loop-integrals.
This result (46) is subject to a further restriction which arises because the original 7-integral
(34) has branch points at y = 41 (when ¢ = 0). These branch points make (46) incorrect
if the col at 7 = 7, is in such a position that the deformed contour of integration cuts the
imaginary axis at a point with |»| > i. This means that we must have y < 142 for small values
of 2z%/b%x, with larger values of y allowable for larger 2z%/62x.

An approximation for large y (with ¢ = 0) can be found by treating (34) as a loop integral
around a branch point, the method being very similar to that already used for the {-integral.
This gives

2chz b4x® i
Cw ~ ) xt [{ 2[y|—b2)2x2+4z4}3:| exp (—4a?— |y| +1b?) cos (x+§m—0,), (48)
222
— 3tan-1]__ _
where 0, = 3tan {x(Qly[ —b2)}’ (49)

a result which does not differ from (46) in important features.
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WAVES IN THE LEE OF A MOUNTAIN 611

In the plane y = 0 the dependence on & of the amplitude of (46) is given by the factor
{042/ (b*x2+42%)}i. If we approximate for x62 > 2z%, as we did previously in connexion
with (40), this factor becomes unity, the parameter 4 then having disappeared from the
result. This again shows that when 4 is large enough the waves in the plane y = 0 are exactly
the same as the waves in the lee of the corresponding infinite ridge. In view of curve 1 of
figure 2, this approximation, which is shown in figure 2 by the broken line, will be valid
for b > 5, say. The full result (46) will be valid for slightly smaller values of 4, since even
when y = 0 (46) only requires |§62—iz2/4x| to be large. This can be seen by replacing the
Bessel functions of the more exact result (40) by their asymptotic forms for large argument,
which gives (46) with y = 0.

The remaining features of (46) and (48) confirm the results of I. As |y| is increased the
wave amplitude falls off rapidly, following the shape of the mountain, so that the waves are
effectively contained in a strip behind the highest part of the mountain; increasing the
width 4 simply increases the width of the strip. The rate of decay of amplitude downstream
isas ¥~%, and the amplitude increases more or less linearly with height z. These waves appear
to be unlike other waves caused by three-dimensional disturbances, and to be in some ways
two-dimensional in character.

To deal with the case of non-zero ¢ we can use the same method of steepest descents, but
a really satisfactory result can only be obtained for the waves in the plane y = 0. When
q = 0 the previous f(7) is replaced by

Sn) = Hi8ox —3aEg+iny — 1b%° +12%(EF +E7) 228, (50)

since §, and §,; now depend upon 7, and

) 1o g
£ = r— b iy — W o (625l S, (1)

We need the value of » for which f'(y) = 0; when y = 0 this value is = 0, because from
(28) and (29) we can see that both £ and £, are zero at 7 = 0. Hence for y = 0 the steepest
descents approximation gives

_ Habz(1—¢*)t exp {—}a*(1—¢%)}

Ly cos {x(l—q2)%+z2(l—q2)%/2x—|~5—;}71}, (52)
V(2) p(2) A CP
_ 2¢°x*+ (24 ¢°) 2° :
1 1 53
where now f = }tan {a2q2(1—q2)%x+b2(1~q2)%x ) ( )

a2q? 2 2 2.1 g2) 2227

and =o)L ot i ) (59

When ¢ = 0 (52) reduces to the previous steepest descents result (46), with y = 0.
Equation (46) was subject to the restriction that |§62—iz?/4x| must be large (y = 0),
and it follows that this must also apply to (52), at least when ¢ is small, even though f(7)
now contains a term in . We can also see from (52) that if ¢? is near to unity the wave-
length, which is approximately 2m/(1—g?)}, becomes very large. The reason for this is
that the branch points in the {-plane are in this case close to the origin, and thus the wave
terms and non-wave terms should not be considered separately. We must therefore assume

74-2
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612 G. D. CRAPPER

x(1—¢®)?¥> 1in (52), in addition to the restriction |162—iz?/4x| > 1 and our previous
assumptions of x > 1a%, (x > 1a%(1—¢®)}¥in (52)) and z < #%. If g% is actually greater than
unity the branch points move on to the imaginary £ axis when 7 == 0, and we have definitely
no waves in the plane y = 0.

The introduction of non-zero ¢ has changed the form of the waves considerably. They now
decay downstream as x~¥ if b is finite, although the decay is still as x~# for the infinite ridge.
The behaviour of the amplitude as a function of 4 is also changed. As b increases the ampli-
tude increases, and eventually tends to the value given by the infinite ridge. This is shown for
a particular case in curve 2 of figure 2; smaller values of ¢ than that shown (g == 1//2) make
the amplitude tend to its limiting value more rapidly. The striking difference between
curves 1 and 2 of figure 2 is of course that in curve 1 (¢ = 0) the amplitude is greater for
finite 4 than for the ridge, whereas in curve 2 it is less.

When neither y nor g is zero the problem can only be solved for a ‘doublet’ type of dis-
turbance which we get by assuming that both a and & are small. The integrand of (34) is

then dominated by e/® — exp (LiE,x+iny), (55)

and we can approximate to the integral by the method of stationary phase. This approach
is dealt with in detail in §4, below, when considering the case of exponential /2. The results
of this method depend on the shape of the curve of £,(7) against 7; a particular example of
this is shown in figure 3. This curve has roughly the same shape as the curves used in §4,
and we shall see that it will lead to waves which are contained in a wedge downstream of the
mountain, resembling ship waves. However, it is not worth giving the details of the solution
in this section as the method breaks down in the most interesting case, when ¢ is small. We
can see this by considering the solution for y = 0: in the doublet solution the C* of (52) is
replaced by {g%x/(1 —¢?)¥}%, but when g is small this term is at most of only the same order as
the other terms in C*.

4. THE STREAMLINE DISPLACEMENT WHEN /2 FALLS OFF EXPONENTIALLY WITH HEIGHT

We now turn our attention to the integral (25). Again we shall introduce non-dimensional
variables, this time taking % as unit of length, and keeping V(0) as unit of velocity. Again
retaining the same symbols for the non-dimensional forms of the various quantities, we
simply replace both % and V(0) by unity.

The integral (25) is different from (17), discussed in §3, because in general the integrand

has poles, where JE@+17) L} e

Jv(§2+”z+q2) { T (56)

Even so, the general approach applied in §3 can be used here.

Considering, then, the {-integral first we again deform the contour as in figure 1,
into the upper half-plane for ¥ > 0 and into the lower half-plane for x < 0, but we can omit
the loops around £ = 4-§, as we now have no branch points. Here the £-integral is equal to
the sum of the residues at poles inside the half-plane considered, poles on the real axis being
regarded as in the upper half-plane, to give waves downstream, plus the contribution from
the integrals along the imaginary axis and round the origin. The other parts of the contour
give no contribution, as before. The loop around the origin will give a non-wave term and
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WAVES IN THE LEE OF A MOUNTAIN 613

will not be discussed here. The values of L and ¢ will determine the position of the poles,
which give waves; for some L and ¢ there may be no poles, and hence no waves.
If (49) has solutions § = £,(5), for n = 1, 2, 3, ..., where some of the §, may be complex,
then
Hab (= . 1 2miJ, (kLe ?/|E]) exp (ifx — }a?E?)
S E —1p2p2 [ &y 4 ] dy. (57
= (2 f |, oxplny—ab) X 3T, (L] |E|)}/oE e | 5%

The real values of £ () can be found from tables of zeros of Bessel functions; the real zeros of
J,(Z) are shown in figure 4. Only one quadrant of the v — Z plane is shown because in (56)
v>=¢=0and Z> L > 0. Graphs of {,(7) from poles on the real axis are shown in figures 5,
6 and 7 for various values of L, with ¢ = 0, and figure 6 shows the effect of non-zero ¢. The
significance of the various values of L will be seen later. Curves from zeros of (56) of higher
order than those shown pass through the origin, and have been omitted. It should be noted
also that these curves are symmetrical about both axes, and only one quadrant is shown.
"This implies that there are two poles for each value of 7, at £ = +1&,(7)|.

3_

Pk b o e e —— e e T

&

Ficure 3. The function £(5) when ¢ = 1/,/2 (¢ non-dimensional). The curve is symmetrical about
both axes, only one quadrant being shown. When ¢ = 0 we get the broken line, £, = 1.

It would seem likely that there will also be some poles which are not on the real axis of
the {-plane, and indeed, such poles do appear in some of the two-dimensional numerical
solutions of Sawyer (1660), giving significant contributions to the integral. The waves due
to these poles decay exponentially with increase of x, so that only poles which are near to the
real axis are important. The exponential factor must be a decay, not an increase, because
of the fact that we have to deform the contour into the upper or lower half-planes according
as x > 0 or x < 0. There does not seem to be any reason why poles at complex values of £
should not appear in the lower half-plane, leading to upstream waves with an exponential
decay, although in considering various air streams, all the poles found by Sawyer (1960)
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614 G. D. CRAPPER

were on or above the real axis. However, Sawyer was unable to prove that this would
always be the case.

In the present problem we can definitely say that there are no poles at complex values
of £ in one special case, when 7 = 0. In this case the argument of the Bessel function in (56)
is real (= L), although the order (= /({24 ¢?)) will be complex if { is complex. Beckmann
& Franz (1957) show the curve in the v-plane on which the zeros of J,(Z) lie (J,(p) in their
notation; the curve is marked j in their figure 13). When Z is real this curve lies along the
real v axis. Thus the only poles when 7 = 0 must be for real ,/(£2+ ¢?), i.e. for real {. (Any
poles for pure imaginary §, for which ,/(§2+ ¢?) could still be real, will contribute only to
the non-wave term.) We shall see that the waves in the plane y = 0, immediately down-
stream of the mountain peak, depend on the case 7 = 0, and thus all these waves come from

8-

| 1 | {

0 2w 4
Ficure 4. Zeros of J,(Z) for real and positive » and Z.

poles on the real axis. This suggests that even if poles exist at complex values of £ when
7 == 0, their contribution to the integral is not likely to be significant. As the author is at
present unable even to establish the existence of such poles, they will not be considered
further here.

To complete the solution for the wave terms arising from poles on the real axis we have
to evaluate the integral (57), with §,(5) real when 7 is real. The best approach still seems to
be to approximate by the method of steepest descents, although here again the method is
too difficult to give us a satisfactory answer in the general case. For a particular z, and when
x is large, the integral is dominated by the factor

e/ = exp (i€, () ¥ +iny — 1a*E3(n) — 10%%), (58)
and S (n) = i&,(n) x+iy —3a%,(n) £u(1) —5b%). (59)

In general the cols, at points where f”(5) == 0 will be at complex values of 7, with correspond-
ing complex values of §,(7). Because of the complicated nature of £, (7) we cannot write
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WAVES IN THE LEE OF A MOUNTAIN 615

down the general positions of the cols, and we can only deal with two special cases. These
are cases already used for non-zero ¢ in §3, namely, the waves in the plane y = 0 and a
‘doublet’ solution.

When y = 0 we again have a col at y = 0. To see this we first differentiate (56) with
respect to 7, in order to examine &, (7) :

with v=JE+1"+¢° (61)

and Z— l%—-fi@ (62)

3r 3

o

R~

L=3-8317
2 Ist. xero 2

L=12024
9’:0
1st zero

2nd zero Ist zero

L

/| \
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t&,

Ficures 5, 6 aNnp 7. The function §,(3) for L = 1-2024, ¢ = 0 (figure 5); L = 3-8317, ¢ = 0,
0-5, 0-75, 0-9 (figure 6); L = 6-379, ¢ = 0 (figure 7) (L and ¢ non-dimensional). All the
curves are symmetrical about both axes, only one quadrant being shown in each case. The
curves come from the first or second real zero of the Bessel function (56) as indicated; all
curves from real zeros of higher order than those shown in any particular figure resemble the
curve of figure 5, passing through the origin. In figure 6 the curve from the first zero passes
through the origin when ¢ = 1.

For (60) to be satisfied at y# = 0 either £,(0) or £,(0) must normally be zero. This fact
is illustrated in figures 5 to 7: in figure 5 £,(0) = 0 and in figures 6 and 7 £,(0) = 0.
However, we shall see that the wavelength of the waves in the plane y = 0, A, is approxi-
mately 27/£,(0), so that when £,(0) = 0 we have infinite wavelength—i.e. all the distur-
bance belongs to the non-wave term which we are not considering here. Thus for wave
terms to appear L and ¢ must be such that £,(0) = 0. Hence, from (59) there is a col at
7 = Owheny = 0.
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616 G. D. CRAPPER

The ranges of L and ¢ which determine the existence of waves in the plane y = 0 thus
depend on the zeros of the Bessel function (56) with 7 = 0 —i.e. the zeros of J,(Z) (figure 4)
with v = /(£2(0) +¢?) and Z = L. Taking ¢ = 0, so that v = |,(0)|, we see from figure 4
that if L < 24048 there is apparently no value of ,(0) corresponding to a zero of the Bessel
function; if 2-4048 < L < 5-5201 there is one non-zero value of £,(0) corresponding to a
zero; if 5-5201 < L < 8-6537 (upper limit not shown) there are two non-zero values of
£,(0), and so on. If ¢isincreased these limiting values are increased. Values of L from each
of the first three ranges were chosen in drawing figures 5 to 7. It is clear from figure 5
that when L < 2-4048, {,(0) = 0 corresponds to a pole from the first zero of the Bessel
function. This is the limiting value of §,(7) as y — 0. Gurves from higher-order zeros than
those shown in figures 5 to 7 also have £,(0) = 0, and thus do not correspond to waves.
To get a non-zero value of £,(0), and hence to get waves, we therefore need L > 2-4048
(L non-dimensional). This agrees with Scorer’s result (1949) for two-dimensional lee waves
when [2is equal to different constants in different layers of the atmosphere, that to get poles,
and the corresponding waves, /2 must decrease sufficiently rapidly with height.

For values of L near to the limiting values the wavelength will be very long and the
disturbance will not be of any interest as waves. Moreover, in these cases, the contribution
from the pole will be affected by the branch point at the origin, as the two singularities will
be close together, and would have to be considered together for an accurate result. We will
therefore exclude values of L and ¢ for which £,(0) < 1, and take only true wave terms.

The direction of integration over the col at 7 = 0 is again easily shown to be

+0 = +}tan"! {52_552132} (0<0<}m), (63)
where §, = |£,(0)| and £, = |£,(0)]. The 4 signs correspond to the two poles which exist for
onevalueofy, at{ = +§,. In writing down the wave term we can now add together the two
values given by the + signs for each #, but we must restrict our values of # to the number
of positive roots £, of (56). The first term of the steepest descents approximation then gives
in the plane y = 0, for x > 1,

Hab 2midy gz, o (Le™2)  (2m)exp (Lif,x—ta22+10)

G~ 22 (2o (D) ¢t S
a[gl k1 |§| |gl=En, =0
where now C = (La2£2£02 1 1b2 + La2b2k En+E02 x2)*. (65)
Equation (64) simplifies to give
o DM i (L) 5 () s (66 10) o0

n V(2) pH(2) {0, (L) )00z g C
Again we have re-introduced the non-dimensional density term p*(z) omitted after (6).
The second special case, the ‘doublet’ solution again applies only to waves in the lee of

small mountains, with ¢ and b each small compared with ,/(x2+y2). With this condition the
integral in (57) is dominated by

e/ = exp (i, (1)x+iny) (67)
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WAVES IN THE LEE OF A MOUNTAIN 617

instead of (58). We can now use the method of Lighthill (1960) directly, although as we
have only a double Fourier integral, compared with Lighthill’s triple integral, we shall not
find it necessary to rotate axes as Lighthill does.

From (67) f'(n) = i&,(n)x+1y, (68)

and f'(n) = 0 if Er) = —ylx. (69)

Equation (69) shows that f'(5) = 0 where the normal to the curve () is in the direction
of the vector r = (x,y) (with the x and y axes coinciding with the £ and 5 axes, respectively).

directions of lines
of constant phase

+X
¢,

normals
to curves

Freure 8. Construction of the lines of constant phase for the doublet solution. The upper half of the
diagram represents the physical -y plane, and the lower half represents the £~y plane. The
curve £ = £, () has a point of inflexion at P. Here the normal to the curve is parallel to OP’,
and therefore for points on OP’ the col is at P, and the lines of constant phase are perpendicular
to the wave-number vector OP. The normals at R, and R, are both parallel to OR’, giving two
cols and two sets of lines of constant phase at points on OR’, one set perpendicular to OR,, the
other perpendicular to OR,. Along OX the lines of constant phase are simply perpendicular to
0X, the second set of waves having zero wavelength because the second normal parallel to OX
is at 7 = +oo. There are no waves outside the wedge with semi-angle P'OX = ¢,, because
there are no normals to £ = £,(7) making angles > e, with OX.

The position of the col for a given r is thus completely determined by the geometry of the
curve £ = £ (7). Moreover, the final wave term will contain a factor

exp(i&,(7,) x+in,y) = exp (iK,.r),

wherek, = (£,(7,)57,.), 7, being the value at the col. Therefore k, is the wave number vector
for the particular x,y chosen and the wave crests will be perpendicular to k,. This enables
us to sketch the lines of constant phase quite simply ; the method is demonstrated graphically
in figure 8. The resulting lines are exactly like those of ship waves.

The curve £ = £,(y) has points of inflexion (in the cases which give waves, e.g. figures 6
and 7) and at these points the normals to the curve make certain angles, +¢,,(¢, > 0), say,
with the x axis. The normals at all other points of the curve make angles ¢, where|¢| < ¢,,

with the x axis. There are thus no cols, and hence no waves for directions of r with
75 Vor. 254. A.
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[tan~! (y/x)| = |¢| > ¢,,; for directions of r with |¢| <, there are two normals parallel
to r, and hence two cols, which give us two sets of waves, corresponding to the ‘diverging’
and ‘transverse’ sets of ship waves. This wave pattern is in agreement with the result of
Scorer & Wilkinson (1956) for an air-stream with /2 constant in layers.

The zeros of (56) which give curves with £,(0) zero or almost zero will again lead to very
long waves, and will not be dealt with here. It will be clear, however, that only the waves in
the plane y = 0 will have a strictly infinite wavelength when the curve § = £,(7) is of the
type shown in figure 5.

Having determined 7, for the particular x, y being considered we can write down ¢, by the
method of stationary phase as f(7) is entirely imaginary. This gives for x > 1,./(x?+y?) > a, b,

Hab
G~ 22 anV(z) p*(2)

exp (i€, ¥-1p,y — a6, — 1%, £ Hmsgn gy,
X { 2” x}%{zﬂi‘];ﬂ(kl‘ez/‘gl)} s (70)
E=Enm 1="n

|5l 0 ; (kL
=5g % jg)
where 7, is now the value of 7 at the col which corresponds to a positive value of §,(7)
(7, willbe Z 0ify £ 0, from figure 8), £, = £,(7,) > 0 and &,, = &,(5,). The function sgn §,,
equals 41 according as £, 2 0. The -+ signsin (70) are again due to the fact that the part
of the curve § =¢, () with § negative gives a contribution to the downstream wave.
On being rearranged, (70) becomes

Hab(2m)* {Jk,(kLe’z/lgl}
CW ~ -
E=Eans 7="n

> Vie) M) | 0, (AL
g% (¢

1,272 _ 112,2
= (Tg g[n;)% ) Gin (€, et py+Amsen ) (71)

(+ possible wave terms from poles not on the real axis of the &-plane (7, = 0)).
This form of solution breaks down if §,,, 5, are near to the points of inflexion, because
there §,, = 0. If x, y actually correspond to a point of inflexion, (71) is replaced by
HabT(3) 6! (Jp(RLe7/|E]) exp (— 103, — 15°n2)
€ ~ z 13 1 i - " - 1 “2sin (gnnx+”ny)
I RCTICES vy 22 (AL
aigl ! lgl E=Enns 1=7n

(72)
Thus exactly as with ship waves the rate of decay of amplitude is as x~* except near to the
edges of the wedge, where it is as x~%. It would therefore appear that the waves will be
detectable further downstream near to the edges of the wedge. However, because of the
factor exp (—1a%2,—1b%32), and the fact that £,, and 7, are smallest when y = 0, it is
likely that only the waves which are roughly perpendicular to the air stream (the transverse
system) will be large.

This doublet solution will apply to any elliptical mountain with finite ¢ and & provided
that ¥ and y are taken large enough, but we can no longer let & — 00 and expect to get the
infinite ridge solution. In fact as 4 increases the amplitude tends rapidly to zero. The full
solution (66) for y = 0 gives a more reasonable result: as b —oo, b/C* - /2, and the
waves become like the two-dimensional waves of Palm & Foldvik (1960), with no decay


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

WAVES IN THE LEE OF A MOUNTAIN 619

downstream. The behaviour of the amplitude of (66) as a function of 4 is shown in figure 9,
for various combinations of e and x. The amplitude approaches that of two-dimensional waves
quite rapidly, although, as is to be expected, increase of either a or x increases the three-
dimensional effect. For finite 4 the wave amplitude is smaller than the amplitude of waves in
the lee of the infinite ridge; the value of ¢ has no significant effect. This may be contrasted
with the behaviour of the waves produced when /2 is constant (figure 2). The curves of figure 9
are in fact very similar to curve 2 of figure 2, which applies when ¢ 0.

2.—

-
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@ 2 1 —_

&

g

£

&

© 3

S

2

A,

g

© l | | l ! | I | | A
0 2 4 6 8 10 oo

b

Ficure 9. The amplitude of the waves in the plane y = 0 as a function of 4, the parameter governing
the width of the mountain perpendicular to the undisturbed air stream, when /2 is exponential.
In curve 1, @ = 4/2, x = 5;in curve 2, a = 4/2 x = 10; and in curve 3, a = 4, x = 5; in all three
curves L = 3-8317, ¢ = 0 (a, b, x, L non-dimensional).

When b is large the wave crests will presumably lie more or less parallel to the y-axis in
the lee of the highest part of the mountain, with half-wedge effects at each end where the
mountain is not so high.

The wavelength, A, of the waves in the plane y = 0 (66) is 27/, if we neglect the depen-
dence of  on x, which has little effect. The way in which A varies as the characteristics of the
undisturbed air stream, L and ¢, are changed is shown in figure 10. It appears that a small
increase in ¢ for a fixed value of L has little effect on the short wavelengths, but increases
long wavelengths considerably; if ¢ is increased sufficiently the wavelength may become so
long that the disturbance is no longer observable as waves. A small increase of L for a fixed
value of ¢ decreases long wavelengths, but again has little effect on short wavelengths.

All the waves calculated in this paper, including those when /2 is constant (§3), show the
same behaviour with increase of @, the parameter governing the width of the mountain in
the stream direction. This behaviour is given by the factor a exp (—$4%2) in the amplitude
(with §, = & (= 1 when ¢ = 0, y = 0) in §3). If the mountain height H is kept constant the
wave amplitude has a maximum value at a = /2/,; if H and a are varied in proportion,
keeping the mountain the same shape, the amplitude is maximum ata = 2/£,. The amplitude
falls off rapidly on either side of these maxima. This ‘resonance’ of the waves when the wave-
length is in the correct relationship with the mountain width was first pointed out by Corby
& Wallington (1956) for two-dimensional waves. Gurves of amplitude against a are shown

for cases similar to the present one in I (figures 5 and 6).
75-2
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620 G. D. CRAPPER

Provided that a is not too small the factor exp ( — +4%2) also dominates the amplitude of
(66) when considered as a function of L or of ¢. Increasing L for fixed ¢ increases £, and
therefore decreases the amplitude in general, although if L increases from one of the critical
values for which §, = 0, the amplitude may increase at first. Thus as a function of L, maxi-
mum amplitude will occur near to the critical value; we must remember that £, is not
allowed to be too small, to prevent the pole from being close to the branch point at the origin.
Increasing ¢ from zero for a fixed L decreases £, and so increases the amplitude initially,

8

1 | | | L 1 1 | 1 —_—
0 4 8 12 A 16 20 o0

Ficure 10. The wavelength in the plane y = 0, A, as a function of L and ¢. If ¢ = 0 we have no
waves for L < 2-4048, one wave for 2-4048 < L < 5-5201, and two waves for L > 5:5201,
with similar ranges for other values of ¢ (A, L, ¢ non-dimensional).

but as g approaches the limiting value which makes &, zero the amplitude falls rapidly to
zero. This is because £2£, — 00 as §, — 0. The function &, can be found by differentiating (60)
with respect to 7 and then putting £,(7) = 7 = 0, for the point corresponding to waves in
the plane y = 0. This gives

L LY %+92){3J}(Z)/3Z

nT R & 0J,(Z) v }Z=L,V—”=1/(£%+q2) '

If b is infinite and we have the ridge solution, £, disappears from the wave term, and then the
amplitude becomes infinite as g approaches the limiting value. As ¢is not allowed to be near
these limiting values, we can say that increasing ¢ usually increases the amplitude, the rate
of increase depending on a, b and L.

The variation of the amplitude with height, z, is shown in figure 11, again for the plane
y = 0. Curve 1 of figure 11 is for L = 3-8317 (,/(£2+4¢?) = 1). For this value the amplitude
reaches 2 maximum at z = 0-75, above which it falls off rapidly. Curves 2 and 3 show
the amplitudes of the two lee waves given by L = 6-379 (/(£2+¢?) = 3 or 0-56). The total
lee wave for this value of L will be the sum of these two waves. From figure 11 we can see
that the longer wavelength (curve 3) will be dominant for z > 1, say, but at low levels the

(73)
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WAVES IN THE LEE OF A MOUNTAIN 621

dominant wave will be determined by the width a of the mountain, as either wave, but
not both waves together, can be in resonance; if the mountain width is between the two
resonance values the lee wave will be composed of each wavelength in roughly equal
proportions. The curves of figure 11 apply also for waves in the lee of a ridge.

6

-3 -2 'll 0 1 2
amplitude (arbitrary scale)
Ficure 11. Wave amplitude in the plane y = 0 as a function of height z, for (1) L = 3-8317 (Ist

zero); (2) L = 6-379 (Ist zero); (3) L = 6-379 (2nd zero); with velocity and density assumed
constant (z, L non-dimensional).

The actual waves formed in the planey == 0 when L = 3-8317, ¢ = 0 are shown in figure 12
for a circular mountain with ¢ = b = /2, H = } and for the corresponding ridge a = /2,
b =0, H = %. The velocity and density are taken to be constant. The non-dimensional
wavelength in this case is approximately 27. The values of z used by Palm & Foldvik (1960)
are in the range of 25 x 103 to 3 x 10*m, which makes the actual value of the wavelength
lie between about 15 and 200 km. Obviously the largest values of z give waves which for this
value of L are much too long to be of interest in our problem, and in which the effects of the
earth’s rotation will appear. The waves at height z = 0-75 in figure 12 are the waves of
maximum amplitude with regard to height, and all waves have the maximum amplitude
for this height of mountain, because a, = ,/2. Since the two-dimensional waves cut the
ground, which is another streamline, it is clear that the linear theory does not apply to
mountains as high as A = { when a = /2, b = o0, the wave amplitude being simply pro-
portional to H. ‘

The waves for z = 3,y = 0, witha = /2, H = }, asin figure 12, have also been calculated
for the case of constant /2 with ¢ = 0, from (46), approximated for x62 > 222 (b > 5). The
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amplitude of the first wave, which has its crest at x = 6, is about the same as the amplitude
of the first wave of the exponential /2 case at the same height (z = 3) for the circular moun-
tain, but when /2 is constant the rate of decay is increased. As the amplitude increases
linearly with height when /2 is constant, the waves are very much smaller than the waves
of figure 12 at height z = 0-75 but are beginning to have a non-negligible amplitude at the
height at which the theory of §3 breaks down.

The shape of the wave crests for the exponential /2 case with L = 3-8317, ¢ = 0, calculated
from the doublet solution by the method of figure 8, is shown in figure 13. The phase dif-
ference of 47 between the two sets of waves is due to the change of sign of €}, (see (71)) at the

I

,_1“ ) point of inflexion of £ (). At the edges of the wedge the waves are actually a single system,

NI

@) = infinite

= E ridge Vr\ /7 T~ /_ZQ _—
=0

L O

=

circular
_ mountain

U S A
\/

Ficure 12. Waves in the plane y = 0 for the circular mountain with ¢ = b = /2, H = {, and for
the infinite ridge @ = 4/2, b = 00, H = {, when L = 3-8317 and velocity and density are as-
sumed constant (a, b, H, x, z, L non-dimensional). The scale of the mountain and the waves
is the same as that of the height, z, of the undisturbed streamlines. Since the waves given by
the ridge cut the ground, the theory will not apply to ridges as high as H = } when a = /2;
in this case the mountain shape and waves may be taken to be for a smaller H, but drawn on a
larger scale than that of z.
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:ﬂl S with crests mid-way between those shown (from (72)). The position of the point of inflexion
é ~ in the curve § = {,(5) for this value of L (figure 6) has not been determined accurately,
= and therefore the semi-angle of the wedge, which measures 23}°, is not accurate. The same
= O wedge angle applies at all heights, but will change if L changes. For L = 3-4910, ¢ =0
E 8 (€, = 0-75) the semi-angle is approximately 283°. Considering this and also the curves of

figure 7, it appears that the wedge angle decreases as L increases (wavelength decreases)
for the waves from the first pole; waves from the second pole, when they exist, are contained
in a wedge with awider angle than thatof the wedge containing the waves from the first pole.

In view of their similarity to water waves, the waves given when /2is exponential are just as
expected. The waves given when /? is constant are very unusual, particularly the behaviour
of the amplitude as a function of 4, coupled with waves contained in a strip and not in
a wedge, and the dependence on ¢. Clearly some physical explanation of these results
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WAVES IN THE LEE OF A MOUNTAIN 623

is desirable, but at the present time no such explanation is offered. The difference
between the waves contained in a strip and those contained in a wedge will be essentially
mathematical, however, because, as remarked earlier, only the transverse system of waves
will be detectable in the wedge cases, and these waves will appear to be within a strip.

101
ty
no waves
sk outside wedge
1 | J
0 5 10 x 15 20

Ficure 13. Wave crests in horizontal planes as shown by the ‘doublet’ solution, for L = 3-8317,
q = 0 (x,, L non-dimensional).
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